Local Estimates for Jacobi Polynomials
نویسنده
چکیده
It is shown that if α, β ≥ − 12 , then the orthonormal Jacobi polynomials p (α,β) n fulfill the local estimate |p n (t)| ≤ C(α, β) ( √ 1− x+ 1 n ) α+ 2 ( √ 1 + x+ 1 n ) β+ 2 for all t ∈ Un(x) and each x ∈ [−1, 1], where Un(x) are subintervals of [−1, 1] defined by Un(x) = [x− φn(x) n , x+ φn(x) n ]∩[−1, 1] for n ∈ N and x ∈ [−1, 1] with φn(x) = √ 1− x2+ 1 n . Applications of the local estimate are given at the end of the paper.
منابع مشابه
The coefficients of differentiated expansions of double and triple Jacobi polynomials
Formulae expressing explicitly the coefficients of an expansion of double Jacobi polynomials which has been partially differentiated an arbitrary number of times with respect to its variables in terms of the coefficients of the original expansion are stated and proved. Extension to expansion of triple Jacobi polynomials is given. The results for the special cases of double and triple ultraspher...
متن کاملSolving the fractional integro-differential equations using fractional order Jacobi polynomials
In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...
متن کاملJacobi Polynomials, Bernstein-type Inequalities and Dispersion Estimates for the Discrete Laguerre Operator
The present paper is about Bernstein-type estimates for Jacobi polynomials and their applications to various branches in mathematics. This is an old topic but we want to add a new wrinkle by establishing some intriguing connections with dispersive estimates for a certain class of Schrödinger equations whose Hamiltonian is given by the generalized Laguerre operator. More precisely, we show that ...
متن کامل2 6 Ja n 19 96 ESTIMATES FOR JACOBI - SOBOLEV TYPE ORTHOGONAL POLYNOMIALS
Let the Sobolev-type inner product f, g = R f gdµ 0 + R f ′ g ′ dµ 1 with µ 0 = w + M δ c , µ 1 = N δ c where w is the Jacobi weight, c is either 1 or −1 and M, N ≥ 0. We obtain estimates and asymptotic properties on [−1, 1] for the polynomials orthonormal with respect to .,. and their kernels. We also compare these polynomials with Jacobi orthonormal polynomials.
متن کاملComparative study on solving fractional differential equations via shifted Jacobi collocation method
In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007